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1 Introduction

In Germany, spatial structures of precipitation are mainly 
determined by the orography and its position in relation 
to the sea. This is not only the case for long-term means 
of precipitation sums (Klein and Menz 2003), but holds 
true for heavy precipitation as well, as shown on the basis 
of the frequency of daily sums of 10 mm and more (Ger-
stengarbe and Werner 2009). As visualized in Fig. 1, large 
precipitation sums occur mainly in mountainous areas and 
in regions close to the coast of the North Sea. Small daily 
sums occur especially in the northeast.

In this study, our focus is exclusively on heavy precip-
itation in Germany, which we define as precipitation that 
leads to daily sums of at least 10 mm. A weather station 
with a daily precipitation sum larger than or equal to this 
threshold is considered to have a precipitation event on the 
corresponding day.

Variations in the spatial distribution of precipitation 
are well-captured by precipitation events defined by said 
threshold: The spatial precipitation pattern, given by aver-
age daily precipitation sums, is very similar to the spatial 
pattern of average event rates (see Fig. 1). Furthermore, we 
consider 10 mm as a good compromise between having a 
sufficient number of events at each location and a rather 
high threshold in order to study heavy precipitation. The 
average event rate for all event series of the entire period 
with a threshold of 10 mm is around 0.064. On average, we 
have 1300 events per event series.

In order to study synchronous occurrences of heavy 
precipitation events, we specify synchronization scores 
between all 2337 meteorological stations and precipita-
tion gauges in Germany. These scores are defined as the 
number of synchronous occurrences of events in the pairs 
of event series, standardized to the expected number of 
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synchronous occurrences assuming uniform-randomly dis-
tributed events. The obtained spatial synchronization struc-
ture is analyzed in terms of a regional climate network. 
Recently, similar approaches have been taken for extreme 
rainfall events in the Indian Monsoon System (Malik et al. 
2012), as well as in the South American Monsoon System 
(Boers et al. 2013), but with a slightly different synchroni-
zation measure introduced by Quiroga et al. (2002) called 
Event Synchronization (ES). In general, applying complex 
network theory to climate time series has proven to deliver 
novel as well as established insights into climate dynamics 
(Paluš et al. 2011; Ebert-Uphoff and Deng 2012; Feng and 
Dijkstra 2014).

We will introduce a new version of the measure direc-
tionality, which provides isochrones along which heavy 
precipitation events typically occur synchronously. We are 
going to provide a climatological interpretation for this 
network measure, which will be confirmed by putting our 
results into relation with the atmospheric conditions of 
six important climatological circulation patterns over Ger-
many, namely Bridge Central Europe (BM), High Cen-
tral Europe (HM), Trough Central Europe (TRM), Trough 
Western Europe (TRW), Northwest Cyclonic (NWZ) and 
West Cyclonic (WZ).

2  Data

In this study, a precipitation gauge data set provided by 
the German Weather Service (Deutscher Wetterdienst) 
and the Potsdam Institute for Climate Impact Research is 
employed. It consists of 2337 daily time series for the time 
period 1951–2007 for Germany. Each time series consists 
of measurements of precipitation sums in mm/day. Since 
there are no missing measurements in the time period 
under consideration, the data is regularly sampled in time. 

However, it is irregularly sampled in space. In other words, 
the spatial coverage of rain gauges is not homogeneous. In 
order to derive spatial patterns which are independent of 
the spatial coverage of data, we use the method proposed 
in Rheinwalt et al. (2012), which will be explained in the 
next section.

Concerning the comparison between results of this study 
to known atmospheric circulation patterns, we employ geo-
potential height at 850 hPa and corresponding wind field 
composites derived from the MERRA reanalysis product 
(Rienecker et al. 2011). This data product has a spatial 
resolution of 1

2

◦
 on latitudes and 2

3

◦
 on longitudes. This 

resolution does not resolve regional wind patterns, but still 
reveals large-scale atmospheric conditions. Although this 
daily data set starts only in 1981 it yields sufficiently accu-
rate composites for the purpose of this study.

3  Methods

3.1  Climate networks

To analyze the spatial structure of the temporal interrela-
tions between climate time series, climate networks have 
proven to be particularly useful (Tsonis et al. 2006; Donges 
et al. 2009; Yamasaki et al. 2008; Steinhaeuser et al. 2010, 
2012; Malik et al. 2012; Boers et al. 2013). Commonly, 
time series at different geographical locations are identified 
with network nodes and correlations between them are rep-
resented by network links.

Although there are studies using link-weighted climate 
networks (Gozolchiani et al. 2008; Steinhaeuser et al. 
2010; Zemp et al. 2014; Boers et al. 2014a), most focus on 
unweighted climate networks; especially those concerning 
precipitation events (Malik et al. 2012; Boers et al. 2013). 
In most climate networks studied so far, only the strongest 

Fig. 1  Average daily precipita-
tion sums (left) and rates of 
events with precipitation  
≥10 mm (right) for each 
weather station. The region of 
interest is decomposed into 
Voronoi cells with stations at 
cell centers. Each cell is colored 
according to the colorbar on top
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correlations between time series were represented by links. 
In addition, these links were typically unweighted. In con-
trast, we incorporate all possible links—not exclusively 
those corresponding to strong correlations—and weigh 
links according to their synchronization score.

The topological structure of such climate networks is 
assumed to encode properties of the underlying climate sys-
tem. The topology is usually inspected in terms of network 
measures like degree, local clustering coefficient, closeness 
centrality, shortest-path betweenness, etc. [for instance in 
Boers et al. (2013)]. These node-based measures determine 
values for each node in space. Such a scalar or vector field 
of network measure values can then be visualized on a geo-
graphical map with the same spatial embedding. Features 
of the underlying climate network can thereby be directly 
related to the corresponding geographical region.

However, said network measures are known to be 
influenced by the spatial embedding of the network itself 
(Gastner and Newman 2006; Barnett et al. 2007; Hen-
derson and Robinson 2011; Rheinwalt et al. 2012; Bere-
zin et al. 2012). Here, networks are confined by German 
national borders and thus network measures experience 
boundary effects (Rheinwalt et al. 2012). Additionally, net-
work measures are also biased by the irregular sampling 
of nodes in space (Heitzig et al. 2012). In this study, all 
these effects of the spatial embedding on network measure 
scores are estimated and corrected for, using the method 
proposed in Rheinwalt et al. (2012), but adapted for 
weighted networks.

3.2  Precipitation event series analysis

Daily precipitation time series include many zeros and 
comparably few spikes. Such distributions are methodolog-
ically challenging for time series analysis, since commonly 
used similarity measures such as Pearson’s correlation 
coefficient are debatable in such contexts. Here, we choose 
an event-based approach that standardizes the number of 
simultaneous events with respect to the expectation from 
independent time series.
For each precipitation time series we have a series of pre-
cipitation events corresponding to days with precipitation 
sums above the threshold of 10 mm. For each pair of such 
event time series, we then count how often events occur in 
both series at the very same time (see Fig. 2). These counts 
depend on the number of events. As the total number of 
events increases, the maximum possible number of counts 
also increases, as well as the number of counts that occur at 
random. In other words, these synchronization counts are 
biased by the number of events. This bias is called event 
rate bias in this study. Estimating the expected number of 
simultaneous events in independent time series is equiva-
lent to the combinatorial problem of sampling without 

replacement. The corresponding probability density is 
given by the hypergeometric distribution:

where p(k) is the probability to have k synchronizations 
between two event series of length n with x and y events, 
respectively, at uniformly random time positions.

(1)p(k) =

(

y

k

)(

n− y

x − k

)

(

n

x

) ,

(A
)

(B
)

Fig. 2  Precipitation events (vertical red and dotted black lines) 
are defined as days with daily precipitation sums above the 10 mm 
threshold (horizontal dashed red line). Events at weather station A 
synchronize with events at station B if they occur at the same time. 
These events are marked as vertical red lines

Fig. 3  Event rate bias as a function of two random event series X 
and Y: We show the mean number of synchronizations in percent of 
the maximum possible number of synchronizations (mean rel. counts 
in %) given X and Y . The length of these series is 100, hence, the per-
centage is also the actual number of events in this example
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The event rate bias is estimated by the expected number 
of counts 〈k〉p. The higher the event rates, the more events 
synchronize at random and hence, the higher is the event 
rate bias. However, no matter how high event rates are in 
one series, the number of synchronizations is always lim-
ited by the number of events y in the series with the lower 
event rate. The expected number of counts 〈k〉p in percent of 
the maximum possible number of counts is seen in Fig. 3.

With the probability distribution p(k) (Eq. 1) obtained 
for the Poisson point process as a statistical model, we 
could test the statistical significance of synchronizations. 
But due to the spatial proximity of weather stations, we 
would reject the null hypothesis that events at two weather 
stations are independent of each other in more than 97 % 
cases with a confidence level of 99 %. Hence, setting 
unweighted links by significance would lead to climate net-
works with very high link densities.

As an alternative, we standardize synchronization 
counts to the distribution p(k). Instead of using observed 
counts, we use the difference between observed counts 
and expected counts 〈k〉p in units of the standard devia-
tion of the corresponding p(k). Hereby, the event rate bias 
in synchronization counts is eliminated and synchroniza-
tion scores that are independent of the number of events 
are obtained. A synchronization score Sij between two 
time series i and j is regarded as an estimate of similarity 
between i and j:

where kij is the actual number of synchronous events for 
station i and j, 〈k〉p is the corresponding expectation value 
with respect to p(k), and σp is standard deviation of the dis-
tribution p(k). A comparison between the commonly used 
ES and our proposed similarity measure concerning the 
event rate bias is provided in the "Appendix".

3.3  Weighted climate network construction

Six weighted climate networks are examined in this study, 
constructed for the temporal subsets corresponding to the 
six dominant atmospheric circulation patterns over Ger-
many. These networks thus represent the synchronization 
structure of precipitation events for the respective circula-
tion pattern in the time period under consideration. The net-
works are constructed by using the corresponding matrix S 
of synchronization scores computed for the respective tem-
poral subsets as a link-weighted network adjacency matrix.

3.4  Network measure

In this study, we analyze weighted climate networks with a 
novel version of the network measure directionality (Boers 

(2)Sij =
kij − �k�p

σp
, et al. 2014b), which accounts for biases in the measure due 

to spatial effects (Rheinwalt et al. 2012).
The directionality of a node i specifies a vector (ρi,ϕi) 

that points in the dominant direction of links concern-
ing their number and strength. The dominant direction is 
derived by the mode of the frequency distribution Pi(ϕ) of 
synchronizations depending on the direction ϕ. The calcu-
lation of the mode is performed by using a fuzzy angle def-
inition: A direction ϑ is regarded as identical to ϕ if it falls 
into the same angle interval (ϕ − ǫ,ϕ + ǫ). In this study ǫ is 
chosen as 0.02 rad. Thus, Pi(ϕ) is defined as:

where φ(i, j) denotes the angle of the link from node i to 
node j. Here, networks are undirected; therefore angles are 
projected onto the semicircle so that φ(i, j) = φ(j, i) (see 
Fig. 4 for an example). Thus, ϕi specifies a tangent to node 
i, and not a vector, along which synchronizations occur 
most often. The directionality of node i is defined as:

Pi(ϕ) =
∑

j:φ(i,j)∈(ϕ−ǫ,ϕ+ǫ)

Sij ,

(3)ρi = max
ϕ∈[0,π)

Pi(ϕ)

(4)
ϕi = arg max

ϕ∈[0,π)
Pi(ϕ) .

SAB = 4

SAC = 6

SAD = 5

SAE = 3

φAD

φAC

A

B

C

D

E

PA

765

45◦

90◦

164◦

ρA = 7
ϕA = 164◦

Fig. 4  Directionality for an example node A with four neighbors B,  
C, D and E. These four neighbors result in three directions due 
to the fuzzy definition of angles and the network being undirected. 
φAD = 45

◦ and φAC = 270
◦ but is flipped back into the first semicir-

cle so that φAC = 90
◦. The same is the case for φAE. Therefore, also 

due to the fuzziness of angles, we consider φAB ≈ φAE ≈ 164
◦. For 

this direction the distribution PA(164
◦) = SAB + SAE = 7 which is 

the maximum of PA. This results in a directionality strength for node 
A of ρA = 7 and the tangent has an angle of ϕA = 164

◦
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Since Pi(ϕ) is not a count of links, but a count of standard-
ized synchronizations for a given fuzzy angle ϕ, it is called 
a frequency distribution of synchronizations and not of 
links. ρi is regarded as the directionality strength.

In this study of synchronously occurring heavy precipi-
tation events, the tangent to a node i defined by ϕi specifies 
isochrones for these events, i.e., lines along which events 
occurred simultaneously. We thus expect the isochrones to 
be typically oriented along the low-level atmospheric flow 
direction as determined by the corresponding wind fields. 
However, this may depend on the propagation speed of pre-
cipitation systems, the temporal resolution of time series 
and the spatial extent of the region under consideration: 
In case of particularly low propagation speeds in relation 
to the daily temporal resolution of the data, the orientation 
of the isochrones may be dominated by the actual spatial 
extension of the precipitation system rather than by its 
direction of propagation. This may happen for a slowly 
moving frontal system, where the isochrones should be 
expected to align with the orientation of the frontal system, 
and not with its direction of propagation. In contrast, fast 
moving precipitation systems will leave event traces in the 

direction of the flow. If these traces are dominant, isochro-
nes feature their orientation.

The measure directionality is visualized by coloring 
for each node i a tangent with angle ϕi according to its 
strength ρi, i.e., isochrones are colored by their directional-
ity strength (see Figs. 5, 6, 7).

Spatial effects influencing the network measure are esti-
mated by using a spatial surrogate network. Such a surro-
gate will be constructed such that it has the same number of 
nodes with the same spatial embedding as well as the same 
dependence of the link probability on the spatial length of 
links. Accordingly, the average link weight for links of a 
certain spatial length is the same in the original network 
as well as in the surrogate. This is in contrast to Rheinwalt 
et al. (2012), where the spatial surrogate was sampled by 
many unweighted networks in order to estimate spatial 
effects for unweighted network measures.

In order to correct for spatial effects in the measure 
directionality, we propose the following: The frequency 
distribution of synchronizations Pi(ϕ) for all nodes i is 
not only estimated on the original network, but also on the 
spatial surrogate. The directionality (ρ∗

i ,ϕ
∗
i ) of node i that 

Fig. 5  Left column geopotential 
height at 850  hPa and cor-
responding wind field com-
posites for the low wind speed 
circulation patterns BM (top) 
and HM (bottom). Right column 
network measure directionality, 
visualized by isochrones for 
simultaneous events with color-
coded values corresponding to 
the directionality strength. The 
line width of isochrones is pro-
portional to 1− (σ ∗)2. Hence, 
more uncertain isochrones are 
thinner than more certain ones. 
Observe that isochrones are 
parallel to the expected orienta-
tion of fronts (as can be inferred 
from the composites in the left 
column). Both columns share a 
common colorbar and the range 
of values in a panel is marked 
by the corresponding yellow bar 
for that panel
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is independent of the spatial embedding of the network is 
then estimated by:

The constant ci is defined as the quotient of the two cor-
responding average frequencies of synchronizations: 
ci = �Porig

i �/�Psurr
i �. This re-scaling of the spatial surrogate 

frequency distribution of synchronizations Psurr
i (ϕ) ensures 

that the directionality (ρ∗
i ,ϕ

∗
i ) is approximately the null 

vector if links are isotropic. However, due to the irregular 
sampling of nodes in space and boundaries in the network, 
even an isotropic link probability can lead to preferred 
directions of synchronizations. In other words, in such a 
case the frequency distribution of synchronizations Porig

i (ϕ) 
is not necessarily flat. However, if the surrogate frequency 
distribution of synchronizations Psurr

i (ϕ) is subtracted, it 
does become flat since the spatial surrogate is constructed 
with an isotropic link probability. On the other hand, if 
the difference in frequency distributions has large positive 

(5)ρ∗
i = max

ϕ∈[0,π)
P
orig
i (ϕ)− ciP

surr
i (ϕ)

(6)ϕ∗
i = arg max

ϕ∈[0,π)
P
orig
i (ϕ)− ciP

surr
i (ϕ) .

maxima at certain angles, then these are due to more syn-
chronizations into the direction of these angles. A positive 
maximum at a certain fuzzy angle is therefore due to more 
synchronizations into that direction than what is expected 
from spatial effects.

In principle, a node can have multiple directions of pre-
ferred synchronizations, and our measure picks the domi-
nant one. In order to estimate the uncertainty σ ∗

i  of this 
dominant direction, the weighted circular variance of all 
angles with positive differences in the frequency distribu-
tions of synchronizations is computed. It is defined as

with � = {ϕ : w(ϕ) > 0} and weights

4  Results and discussion

As mentioned in the methods section above, it is expected that 
isochrone patterns for precipitation are strongly determined 

(7)
(σ ∗

i )
2 =

∑

ϕ∈�
w(ϕ)(ϕ − ϕ∗

i )
2/

∑

ϕ∈�
w(ϕ) ,

w(ϕ) = P
orig
i (ϕ)− ciP

surr
i (ϕ).

Fig. 6  Same as Fig. 5, but for 
the intermediate wind speed 
circulation patterns TRM 
and TRW. Observe that for 
TRM isochrones are typically 
oriented in accordance with 
corresponding frontal systems 
except for the northwestern part 
of Germany. For the circulation 
pattern TRW with even faster 
wind speeds, isochrones are 
mostly parallel to the flow
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by the flow direction of air masses. Here, the influence of 
atmospheric circulation patterns on the orientation of isoch-
rones and values of the directionality strength is assessed 
by reference to six of the most frequent circulation patterns 
according to Hess and Brezowsky (Werner and Gerstengarbe 
2010): two rather dry patterns with low wind speeds (BM 
and HM, Fig. 5), two with intermediate wind speeds but high 
importance for long lasting rainfall that is likely to lead to 
floods (Mudelsee et al. 2004) (TRM and TRW, Fig. 6), and 
the most frequent circulation patterns with high wind speeds 
(NWZ and WZ, Fig. 7). For each circulation pattern the novel 
network measure is compared to a composite of geopotential 
height and wind at 850 hPa. Note that the geopotential height 
fields are on the same scale in Figs. 5, 6, and 7, while the 
length of the wind arrows are not comparable among figures. 
Since wind speeds are proportional to the margin between the 
isobars, they can thus still be compared qualitatively.

4.1  Low wind speeds (Fig. 5) 

The circulation pattern BM with bridge-like highs over Cen-
tral Europe leads to a relatively slow eastward movement of 

northwest-to-southwest fronts over Germany (Werner and 
Gerstengarbe 2010). If such fronts cause precipitation events, 
these events propagate slowly and are hence expected to lead 
to isochrones that are parallel to the orientation of fronts.

The circulation pattern HM is even drier than BM, 
especially in the northeast of Germany, where precipita-
tion events do not synchronize significantly enough along 
a dominant direction. For this pattern, isochrones exhibit 
rather high uncertainty in some geographical regions, and 
are hence very thin or even nonexistent in these areas. 
With anticyclones located over the middle of Germany, 
the circulation pattern HM favors clockwise, slow circula-
tions of frontal systems (Werner and Gerstengarbe 2010). 
In accordance with our climatological interpretation, this 
leads to an isochrone pattern with isochrones typically 
oriented perpendicularly to the circulation direction. How-
ever, this pattern is rather perturbed. This may be explained 
by the strong influence of orography on precipitation: For 
instance in the Bavarian Alps (BA in Fig. 8), isochrones 
are parallel to the mountain range of the Alps. Also the 
Rhenish Massif (RM in Fig. 8) and the Rhineland-Palati-
nate (RP in Fig. 8) perturb the isochrone pattern.

Fig. 7  Same as Fig. 5, but for 
the intermediate wind speed cir-
culation patterns NWZ and WZ. 
Note that except for orographic 
perturbations isochrones are 
overall parallel to the wind flow 
at 850 hPa
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4.2  Intermediate wind speeds (Fig. 6)

From the geopotential height and wind composites obtained 
for the circulation pattern TRM, a southwest–northeast ori-
entation of frontal systems can be inferred. In most parts 
of Germany, the corresponding isochrones are aligned with 
this orientation, suggesting that they are caused by rather 
slowly moving fronts. The exception to this is the north-
western part of Germany, where isochrones are rather 
parallel to the flow. This might be explainable by the fact 
that wind speeds over this region are higher than over the 
remaining parts of Germany, resulting in isochrones along 
the propagation direction of precipitation systems. This 
change in the orientation of the isochrones is very abrupt 
and can be expected to associated with the influence of 
orography. For instance, the influence of the Thuringian 

Forest (TF in Fig. 8) on isochrones is very pronounced in 
this circulation pattern.

For the circulation pattern TRW, isochrones are oriented 
along event traces and therefore parallel to the orientation 
of the flow, in accordance with our interpretation given in 
Sect. 3.4.

4.3  High wind speeds (Fig. 7)

For the circulation pattern NWZ, relatively strong isoch-
rones are observed. Note the dark red isochrones in the 
northwest of Germany and along the mountain range from 
the Thuringian Forest (TF in Fig. 8) to the Bavarian For-
est (BF in Fig. 8). All strong isochrones are parallel to 
the wind flow at 850 hPa. Especially in the northeast of 
Germany, isochrones are rather weak, and as for TRM, 
the orientation of isochrones changes abruptly approxi-
mately along the 10◦E line of longitude. The reason for 
this abrupt change in orientation might be an orographic 
barrier at ≈10◦E (see Fig. 9). The influence of this bar-
rier on yearly precipitation sums is seen in Fig. 9, which 
depicts the orography and precipitation distribution along-
side the 52.75◦N line of latitude. One can see that the ter-
rain ascends from approximately 9.5◦E–10.5◦E from 20m 
to 120m above sea level, before descending again towards 
the Mecklenburg lowlands (ML in Fig. 8). Parallel to this, 
precipitation drops from 740 mm/year at 10.5◦E to only 
550 mm/year at 11.5◦E.

This sudden change in isochrone orientation in the north 
of Germany can also be observed for the circulation pattern 
WZ. However, in this case the directionality strength in the 
northeast of Germany is higher than for NWZ and more 
parallel to the wind flow. Also, isochrones in the mountain-
ous South of Germany are less perturbed by orography and 
thus more in accordance with the flow direction for WZ 
than for NWZ.
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Fig. 8  Orographic map of Germany showing regions to which this 
study refers to by name

Fig. 9  Yearly precipitation in 
blue and above-sea-level alti-
tude in brown along the 52.75◦N 
line of latitude

0
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170

450

500

550

600

650

700

750

800

850

7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

A
bo

ve
se
a
le
ve
l(
m
)

Pr
ec
ip
ita

ti
on

(m
m
)

Degree East



1073Non-linear time series analysis of precipitation events using regional climate networks for…

1 3

5  Conclusion

Based on long-term gauge station data with high spatial 
resolution, we investigated the spatial characteristics of 
daily heavy precipitation synchronicity in Germany by 
means of complex networks. We introduced a new ver-
sion of the network measure directionality that accounts 
for spatial effects in weighted climate networks, dis-
cussed its applicability on regional scales and provided 
climatological interpretations. This measure provides 
insights into the climatological orientation of the prop-
agation of precipitation clusters and frontal systems 
in terms of isochrones which, while being consistent 
with known circulation patterns, go beyond the hith-
erto known. The presented methodology also provides a 
promising framework for evaluating climate models with 
respect to their implementation regarding heavy precipi-
tation. Furthermore, we are convinced that our findings 
can be helpful for the assessment of hazard risks in form 
of floodings and, if combined with climate model projec-
tions, the development of these risks under ongoing cli-
mate change.
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Appendix: Comparison between the commonly 
used ES and our proposed similarity measure 
concerning the event rate bias

The commonly used ES introduced as by Quiroga et al. 
(2002) uses synchronization counts normalized by 

√
x · y, 

where x and y are the number of events in each time series. 
But in order to obtain a notion of synchronicity that is inde-
pendent of the number of events, this does not suffice.

The local node-based network measure strength si 
of a node i is defined as the sum of all its link weights: 
si =

∑

j Sij. Hence, si gives an estimate on how well heavy 
precipitation at a given weather station i is synchronized to 
heavy precipitation at all other weather stations.

In Fig. 10 we compare this measure of two artificial net-
works. Both networks are constructed from the same set of 
random event series, but using a different similarity meas-
ure for each network. Note the relevance of the bias by the 
event rate for this study concerning the spatial pattern of 
network measures.
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